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Exact Solution of Poincar  Gauge Field Equations of 
Gravity with Torsion 
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Under empty, static, and spherically symmetric conditions we find an exact 
metric solution of the Poincar~ gauge field equations. The Schwarzschild metric 
solution is contained in the solution and we also obtain new gauge correction 
terms r -1 and r21nr. 

1. INTRODUCTION 

In recent years, the gauge theory of gravity has become a prime subject 
of research. Many authors have found a metric solution with double 
quality properties of a quadratic Poincar6 gauge field theory (Baekler, 
1981, 1983; Lenzen, 1985; Baekler et aL, 1988; Lee, 1983; Ramaswamy and 
Yasskin, 1979) proposed by Hehl et al. (1980). Under certain simplified 
conditions they obtained the metric ~gauge correction terms r -2  and r 2. 

Shao and Xu (1986) established the Poincar6 gauge theory of gravity 
(PGTG)  exactly by means of fiber bundle theory, in which there are two 
sets of  field equations, the first the generalized Einstein field equations with 
gauge field, the second describing the relationship of  spin currents and the 
geometrical properties of  space time. We find an exact metric solution and 
torsion components from the first set of  equations under empty, static, and 
spherically symmetric conditions. Our solution is composed of the 
Schwarzschild solution and three gauge correction terms r -1, r 2, and 
r 2 In r, in which the terms r -  1 and r 2 In r are new gauge correction terms. 
The gauge correction terms have some interesting physical significance 
which we discuss. 
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2. T H E  FIELD E Q U A T I O N S  O F  P G T G  

The Lagrangian of  our field equations is 

p '  
= C.~mV-~I~V - p  VF/,v jP'vYi--~ VQk~,vQk ~'~ (1) 

where .~em(~k, ~k~,) is the matter field Lagrangian, which is zero in empty 
space-time, p, p'  are gauge gravitational constants, 

V = det(V~) = ( -g ) ! /2  

C = 8nK 

(K is the Newtonian gravitational constant) and 

F~,,,u = ~9 ~,B~'J + B .  ~ B. kj - (# - v) 

i __  i i j Q ~,~-a~,V~ + B~yV,  - - ( v - -co)  

are the curvature and torsion tensors, and they are called gauge field 
strengths corresponding to the connection field BJ~ and the vierbein field 
V~,;. 

From the Lagrangian (1) we get the first set of field equations of 
PGTG (Shao and Xu, 1986) 

i 1 Ru - ~ Vu'R = - C T u ' -  ptu' - p" z , '  (2) 

where T~, i is the matter field energy-momentum tensor, which is zero in 
empty space-time; here the Lorentz indices are denoted by i , j ,  k . . . . .  
0, 1, 2, 3, and space-time indices are It, v, 2 , . . .  = 0, 1, 2, 3. 

Now we restrict ourselves to the condition of  static spherical symme- 
try; then the metric can be put into the form 

d s  2 = - - e  2l~ d t  2 + e 2v d r  2 + r 2 dO 2 -t- r 2 sin20 d~b 2 

= g,v d x ' d x  ~ 

Transform coordinates with wZ= V.  i dx ~, where V~ are the local Lorentz 
vierbein fields 

V~ - (e ~', O, O, 0), V~ = (0, e v, O, O) 

V 2 = (0, O, r, 0), V 3 = (0, O, O, r sin 0) 

Thus in the new coordinate system the metric is 

ds 2 = - ( w ~  + (wl) 2 + (w2) 2 + (w~) 2 = ~uw'w: 

and we have g~,~ = V~ V ~ u ,  ~/i: = diag( - 1, 1, 1, 1). 
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Then the field equations (2) in the coordinate system become 

Eij = - ( C T ,  j + pt  o + p ' ze )  (3) 

where 
1 

E o = R o - ~ ~lo R 

represent the Einstein tensors, and 

tiJ= _(1 elnlmFjnlm)+~(eknlmeklmn)~hj (4 )  

1 m l 1 mn l 
zo = - ~  Qt iQ ym + g Qt Qm nrhj ( 5 )  

are the energy-momentum tensors of the connection and vierbein gauge 
fields and c = 1 - p '  is a new gauge gravitational constant. 

3. THE SOLUTION OF THE FIELD EQUATIONS 

Under the static, spherically symmetric condition, for the nonvanish- 
ing independent components of torsion the following assumption is chosen 
(Baekler, 1981,1983; Lenzen, 1985; Baekler et al., 1988; Lee, 1983; Ra- 
maswamy and Yasskin, 1979): 

Q~ =f(r) ,  Q2zo = Q33o = k(r) 
(6) 

Ql10 = h(r), Q221 = Q331 = --g(r) 

On the fiber bundle, using the first set of Cartan structure equations 

2B; k = -8,gy + Qi k (7) 

we have 
d w i =  8 % w  j ^ w k 

so the nonvanishing independent 8~k can be calculated: 

1 
8010 = p ' e -V ,  8 2 1 2  = - -  e-V r 

1 
8313 = I e-~, 8323 = - -  ctg 8 

r r 

Put (6) and (8) into (7); the nonvanishing coefficients of connection are 

B~ = - p ' e - V  _ f ,  Bllo = h, B22o = B33o = k 

1 1 
B221 = B331 = - e-V -- g, B323 = - - -  ctg 0 

r r 

(8) 



1944 Ma et al. 

Then  on the fiber bundle  the nonvanish ing  independent  connect ion 1-form 

W~ = B ~ w  k 

m a y  be obtained:  

w ~ = (# ' e  -~ + f ) w  ~ + hw  1, 

w31= e - ~  _ g w 3, 

w 2 = k w  z, 

3 1 ctg Ow 3 W2~;  

W 3 = k w  3 

(9) 

Eoo = - 2 H  - L 

E m =  2D 

Elo = 2G 

Ell = L -- 2 J  

E22 = E33 = H + A  - J  

F r o m  the second set o f  Ca r t an  s tructure equat ions  

a~ = dw~ + w~ ^ w~ = R % w  k ^ w' 

where R~.kt are the curva ture  coefficients on the fiber bundle,  using expres- 
sions (9) and mak ing  a suitable choice o f  bases, we have the following 
nonvanish ing  independent  curva ture  components :  

R~ = (# '  e f ' -  ~ + eUf)" e - ~ -  v =_ A 

R2323 = ~ + k  2 -  e - V - g  - L  

( e-'V g / 
R~ -- R~ = - ( f + / ~ '  e - ~ ) \ - ~  - = J 

(10) 

R 1212 = R 1313 = I e -V(rg -- e -~)" + h k  =- H 
r 

Rlzo2 = R1303 = (p '  e -~ + f ) k  =- G 

= ( r k )  "e - h  e - ~ - g  =- - D  R~ = R~ r 

Substi tut ing (10) into (3), we find the following nonvanish ing  Einstein 
tensors: 
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U s i n g  (10) a n d  (6) in  (4) a n d  (5), respect ively,  we get 

too = d 2 + 2 J  2 - 2G 2 + 2D 2 - 2 H  2 - L 2 

to~ = - ( 4 D J  - 4 H G )  

tto = - ( 4 D J  - 4 H G )  

tl i = - A 2 + 2D 2 + 2 j 2  _ 2 H  2 _ 2G 2 + L 2 

t22 = t33 = A 2 _ L 2 

Zoo = ~ f 2  --21 h 2  _ k 2  _ g2 

ro~ = 2kg  

~lo = 2kg  

zll  = - k 2  - g 2 

1 2 l h 2  
z22 = z33 = ~ f  - 

S u b s t i t u t i n g  these i n to  the  field e q u a t i o n s  (3), we o b t a i n  the fo l lowing  

i n d e p e n d e n t  equa t i ons :  

- 2 H  - L + p (A  2 + 2 J  2 - 2G 2 + 2D 2 - 2 H  2 - L 2) 

,[1 2 1 2 2 2 \ +pbj -g)--o 
2D - p ( 4 D J  - 4 H G )  + 2 p ' k g  = 0 

2G - p ( 4 D J  - 4 H G )  + 2a'kg = 0 

- 2 J  + L + p(  - , 4  2 + 2 J  2 - 2G z + 2D 2 - 2 H  2 + L 2) - p ' ( k  2 + g2) = 0 

, /1  2 1 2 \  
- J + H + A + p ( A 2 - L 2 ) + p ~ f  - - ~ h  ) = O  

In  o r d e r  to f ind the  so lu t ion ,  we a s s u m e  tha t  

f = - h ,  g = k ,  e2U = e  -2~ ( i . e . , / ~ + v = 0 )  

T h e n  we o b t a i n  three  n o n t r i v i a l  i n d e p e n d e n t  e q u a t i o n s  

1 2 
D = a ,  A + L  = - 2 p '  G =  - - 4 p ' k  2 (11) 

3 
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Replacing (11) by (10), then 

-ke~ + k ,  e. + h k__he"=  - k e U ' + k h  
r r 

e ~' 1 I~" e2U + 21~'2 e 2u _ (heU)' + + 2k e ~ . . . .  
T -~ 2p 

2 , 
#" e U - h =  - - ~ p k  

and with the assumption x = k e ~', y = h e ~, and z = e 2~, we obtain the final 
simplified equations: 

x ' +  x Y 0 
r r 

4x 2z 2 1 
~"-  2y" ~ r r ~ + ~ = --~ 

4 
z ' - -2y  + ~ p ' x  =0 

-- goo = I 1 2kmr 

g .  = ( - g o o ) -  1 

= [1 2kmr 

g 2 2  = r 2  

4kmp' l  ( 5  lp ; )  ( _ ~ p + p p . ]  l n r l  3 r + "18p 3 r2+ I l ~ r  2 

4kmp' 1 
3 r +pp,]  lnr1-1  

The solutions are 

( ~ ) r l n r c 2  
x =  c~ -- r -t 2pp" 3r 2 

, i n ,  
y =  2c1+ r + - ~ + 3 r  2 

( 18p5 1 2 ) (3  4 " ' ~ 1 3 p p '  3 9 _ r  z = l + 2ct -t ctp" r 2 -  c2+ pc2)  

3pj 
where c~ and e2 are integral constants. For physical reasons we choose 
cl = 0 and c2 = 3km (m is the mass of gravitational matter). 

Then the nonvanishing components of metric and torsion are 
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g33 = r2 sin2 0 

I 1 r r l n r  k m q  
Q~ = Qlol ~ + = -ff  + 

Q220 = Q330 = Q212 = 0313 

I km] 1 r r l n r  
= - - ~  +---2pp' - ~  (--g~176 

4. DISCUSSION 

This solution is composed of  Schwarzschild metric terms and gauge 
correction terms r - I  r 2, and r 2 In r in the matrix of  the metric gj,~. 

The terms 1/r is a new, additional Newtonian potential mediated by 
the vierbein fields V~; the potential describes the gravitational behavior of 
macroscopic matter and corrects the metric in the long range of space-time, 

The terms r 2 and r 2 In r are both confinement potentials mediated by 
the connection coefficient fields B~;J; the confinement potentials play roles 
in the strong interaction and relate to the metric in the short range of 
space-time. The property of  confinement potentials, the gauge correct term 
r 2, has been applied in strong gravity and the strong interaction. 

Because the connection coefficient fields B~ ij may be used to mediate 
the strong interaction, they offer a possible way to unify the gravitational 
interaction and the strong interaction at some level. 
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